Saturday, January 3, 2015

Solar flashback and why I am not an astrophotographer

One reason I am not a serious astrophotographer: Patience.

I enjoy taking some casual images of bright targets such as the Sun, moon, or a planet but I rely heavily on being able to process these images in a quick and efficient fashion.  I do not have the motivation or desire to spend a lot of time learning the ins and outs of varied software packages to create astronomical images of the highest quality.  Many call my approach to obtaining a nice image "lucky imaging."  At left is a single shot of the Sun taken back on October 23rd when we had the largest sunspot in 24 years near the center of the Solar disc.  On the same day I made a video (AVI) recording of the Sun using my ASI120MC astronomical video camera in the hopes of stacking multiple frames to achieve a sharp, high resolution image.  Below is the AVI file as captured.



This is where the story takes a long break.  Back in the fall I broke down (and nearly went broke...emotionally and economically...) and purchased a new laptop.  I had a very nice 5 year old laptop that was still humming along quite well, yet technology has improved dramatically and doing a lot more work on the go I wanted something a bit lighter than the old 5+ pound beast.  I did my research, moved through periods of analysis-paralysis, wavered on what features I was looking for, and ended up with a Samsung Ativ Book 9 plus.  It is a very nice laptop and I only have two issues that remain.  One is Windows 8.1 which I can't do anything about, and the other is that the display has a resolution of  3200 x 1800 pixels, in a 13-inch class screen.  While this produces stunningly sharp images and can be useful in processing photos, it is somewhat of an annoyance in that several software programs do not always display properly and one can end up with text that is so small as to render it unreadable even with reading (magnifiers) glasses!  There are work arounds and settings that can be tweaked and for the most part things can be set effectively.

Two specific examples that are driving me nuts are Registax 6 and Adobe Camera Raw, both of which I use in the image processing I do.  Registax is used to align and stack multiple frames from AVI recordings (of say the Sun) and is just not displaying properly or working properly on the new laptop.  I have been fighting it since the fall and as a result have not been able to process a single AVI file.  I have known this day was coming but I finally decided to try another program and this morning downloaded and made a first attempt using a freeware program called Autostakkert2!  It seems to work fine, but does not contain the wavelet sharpening tools that Registax does.  Fortunately that functionality of Registax is still usable.  I Also will try a program called Avistack to see which I like better.

Adobe is particularly frustrating in that I was able to get Photoshop to display in a small but reasonable fashion, yet when opening a raw file the window does not display at the proper settings. See the image below and compare the text (not the title bar, but the controls) in the raw window to the application window in the background.


In any event, back to the AVI file I captured back on October 23rd.  Using Autostakkert2! this morning, I did stack and align the best 50% of the frames (out of about 1000) and then use the wavelet filters in Registax to create an image.  While not perfect, you can immediately see it is sharper than the single shot at the top of the post.  I think I can do better as I learn to use AutoStakkert2! (or Avistack) but at least I am back in business with AVI files.  Jupiter season is here, we have a bright comet in the sky, and stacking images is a must to capture these sights!



Thursday, January 1, 2015

Happy New Year and Anniversaries!

[Cave+Laura.jpg]
My Lost Pleiad
2015 is here and with it comes the 5th anniversary of this blog.  I began on January 1st, 2010 (inspired by my friend Dean Ketelesen) with two posts, including this one detailing the inspiration and story of the Lost Pleiad Observatory.  While 2014 saw the least amount of blogging, I do hope to bear down and do more writing this year-  Life certainly has no shortage of material for the blog.

In addition to the blog anniversary, it is also our 19th wedding anniversary!  I am reaching that point in life where despite how long 19 years seems looking forward, it feels like an instant looking in retrospect.  Hairs are graying, my dear son is about to turn 16 and there is an increasing realization that every moment matters.  I look at my lovely and wife and (increasingly GQ) son and know that I am amazingly fortunate.


In addition to being the first day of 2015, I believe that in all my years in Tucson, Arizona this is the first time I recall snow on New Years day!  Yes, you read that right, we awoke to a dusting of snow this morning.  True to most snowfalls in Tucson, it only takes 2-3 hours of sunshine to erase all traces of this beautiful event, but nonetheless it was an awesome anniversary and New Year's present.














Cosmo, our dog (he had that name when we adopted him 11 years ago), let me know at sunrise that it was time for him to go play in the snow.  He has seen snow before, traveling with me to Mount Lemmon and something about it gets him riled up to play like a puppy.  He also let me know that I do not give him enough attention on the blog, so without further ado, here he is enjoying himself in the white stuff.














Finally, here is a picture I had taken a few weeks back from the 7 Cataracts Vista on the Catalina Highway.  It is looking over Thimble Peak towards sunset and just to the left of Thimble Peak you can just make out the dome of the  Mayall 4-meter telescope at Kitt Peak National Observatory on the most distant ridge.


Happy New Year!


Wednesday, December 31, 2014

Star Adventurer testing night 2

After my first successful night using the Star Adventurer mount (detailed here), I wanted to do a more thorough job of learning the ins and outs of the mount and seeing if I could truly take some long exposure images.  The first thing I did was to check during the day to see if the polar alignment scope was calibrated to the mount itself.  This is done simply by placing a distant object on the cross-hairs of the polar scope and then rotating the mount in right ascension.  If the object drifts off the cross-hairs then the polar scope is not centered precisely in the mount housing.  To my delight, the polar scope appeared nearly perfectly calibrated!  There may have been a very slight drift, yet it was so small I felt that I would not be able to make a meaningful improvement using the set-screw adjustments, and in fact I was not totally sure that I was not causing the apparent drift simply by having to move the mount manually.  Yet, sometimes I can obsess (the only enemy of good is better!), so to test this I turned the mount on and set it for 12x sidereal rate and let it track for about 10 minutes.  This would represent 180 degrees of rotation if I let it go for an hour, so in 10 minutes I had about 18 degrees of rotation and there was no appreciable drift.  This is certainly longer than any exposure I see myself doing in the near term as 18 degrees of apparent motion equates to 72 minutes of real time!

As you can see in the image above at left, I set the mount up in my driveway as I wanted to be able to do some visual observing while the camera was running some tests, and in particular I wanted to observe Comet Lovejoy which was very low in south and not visible from within my observatory until much later in the evening.  The downside of this location is that in addition to the moonlight that was pervading everything, I am looking out over our neighborhood (lots of ground level lighting) and there is periodic traffic that comes down the street- hence, one car during an exposure means I need to repeat the test!

Historically, when I have done a rough polar alignment I have started by pointing about a half degree from Polaris towards the 'bright' star Kochab, as this is approximately the location of the north celestial pole.  I wanted to do a fairly precise alignment (short of drifting) and grabbed my phone to look up the location of the pole for the current time...in doing so I wondered if there was an application for my Android that might tell me and sure enough I found a great little application called "Polar Finder" which uses GPS for my time and location and then with the reticle of my choosing shows me where Polaris should be placed in the polar alignment scope.  At right is a generic screenshot from the application which shows a basic reticle (there are patterns for most well known polar scope makers) and Polaris as a green dot.

I know, get to the point, right?  Well, after polar aligning things I set up the Canon with my 14mm Rokinon f/2.8 and started taking exposures.  I did discover that in messing around as much as I was, I had the lens very slightly out of focus.  I'll post them below, but keep in mind that I was only checking to see if stars were trailing and not trying to make pretty pictures...Don't make any assumptions about the sky brightness as I did utilize Photoshop to darken the sky background as the moonlight was wickedly bright, and for most (not all) of the images I also set the ISO to 100 to reduce the sensitivity of the sensor in attempt to not get images that looked like daylight.  Below are the images with the duration in the captions, but the bottom line is that for DSLR long exposure photography, the mount delivers.

60 second test
120 second test


240 second test
360 second test

























Finally, as I mentioned, I was doing some visual observing while the camera was doing its thing and lastly I looked at the moon through my TEC 140.  I couldn't resist sticking the camera in there and snapping a shot before heading in. The image below is a single shot, taken at ISO 800 for 1/1000 of a second.  Note that this was done on a non-tracking, alt-az mount!  Enjoy!






Sunday, December 28, 2014

Star Adveturer! And Comet Lovejoy (C/2014 Q2)!

Nearly New Years and I am finally writing another blog post!  Shortly after the eclipse which was the subject of my last post, Tucson hosted the 3rd annual Arizona Science and Astronomy Expo (ASAE).  You can read a report on this annual show on the blog of my friend Dean Ketelsen.  At the show I ran into another friend, Kevin Legore, who works for Sky-Watcher USA and Kevin showed me a new product that they were carrying called the "Star Adventurer," which is essentially a mini-equatorial mount and wedge designed for use on a photo tripod and with a DSLR.  Kevin noted that they would not be able to ship until the end of November so as soon as I got home from the show I went on their webpage and ordered a Star Adventurer knowing I had about a month to save the money.

I have enjoyed taking wide-field images of the milky way with my camera and have even made a few attempts at time-lapse photography such as from the Grand Canyon this summer.  Naturally, I have been limited to exposures in the range of 20-25 seconds before stars would start to trail.  This is less of an issue from my home due to light pollution, however, from Mount Lemmon or other dark sites such as Portal I would enjoy taking longer exposures.  One common way to track stars and take long exposures is to piggy back one's camera on a telescope, however, that has two disadvantages for me.  One is that it requires far more set up and gear than a simple camera tripod, and two, it means that I can not observe an astronomical target through the telescope if my priority is framing a milky way image.

Right on cue at the end of November, I received an email indicating that my credit card was being charged and that the Star Adventurer was being sent on its way.  Due to busy work schedules, poor weather, and a home renovation project (now complete) I was not able (or motivated) to test the Star Adventurer until last night.  It is not my intention to write a thorough review of the mount, nor could I after only one night of use.  Just like any other piece of equipment it takes some time and practice to learn the finer points of alignment and use.  As you will see below the Star Adventurer works as advertised.  Running on 4 AA batteries (it can also be powered by USB) it tracks the apparent motion of the sky at one of several user-selected speeds.  I only used the stellar setting in my attempts last night.  In addition, I did not calibrate the included polar scope to the mount (meaning it could be slightly misaligned), and I only performed a rough polar alignment placing Polaris about where it ought to be in the scopes reticle.  My main objective was simply to see if the unit worked as I was a fairly early adopter.  Good enough for government work anyway!



My first target, as it should be this time of year, was the constellation of Orion.  The camera attaches to the Star Adventurer with a user supplied ball-head and the first lesson I learned was that everything needs to be tightened down securely!  Not just to prevent a major disaster, but also to prevent the camera from slowly slipping/rotating during the exposure.  Once I had everything snug, I took the picture below with a 14mm f/2.8 Rokinon manual lens at ISO 800 for 30 seconds. Click to enlarge (and ignore the lens flare at lower left from a neighbors security light!).


As the sensor was exposing, I remembered that Comet Lovejoy (C/2014 Q2) was moving up through Lepus and toward Orion.  I grabbed my binoculars, found the comet easily and noted its location.  I then zoomed in on the image I had just taken and BAM! there was the comet! Below is the same image and you will see at lower right that Comet Lovejoy is labelled.


I then decided to see how the Star Adventurer would handle a heavier load and installed my Canon 70-200 f/4 zoom in place of the smaller Rokinon to image the comet.  Below is am image of the comet.


Recent images of this comet have shown that its tail has been having a very interesting past few weeks, separating from the comet with a new tail growing in place of the previous- this article from Universe Today explain matters.  I took another exposure with the ISO too high (3200) to see if I could detect any tail structure...sure enough I thought I could see hints of one, so I inverted the image, stretched things a little and sure enough, you can see a thin tail stretching to the NE in the image!


Finally, as long as I had the the heavy lens out I centered the Orion Nebula and took a 30 second image of that region, and below is the result.


All in all, pretty impressive results for night one, and remember that all the above are single shots, no stacking of images.  Taking images with heavy lenses will likely require the optional counterweight kit that Sky-Watcher sells as it did seem that the mount would struggle at certain orientations.  Also, while I stuck to 30 second exposures last night just to make sure the mount worked (I have it on some authority I ordered the first one in the US!), a more critical polar alignment is needed for me to take long exposures.

Monday, October 27, 2014

Partial Solar Eclipse

Last Thursday we witnessed a partial solar eclipse of the Sun- and for some reason this particular eclipse did not grab the attention of the media the way that the past few have.  It seemed that there were far more stories in the popular media for the lunar eclipse a couple weeks ago than for this event, despite the lunar eclipse happening in the middle of the night and the solar eclipse happening in mid-afternoon.  I was up at the Mount Lemmon SkyCenter with my colleagues (we streamed the eclipse live) and took the opportunity to take some images of the eclipse of my own.

I was using my Stellarvue 90mm triplet refractor with a Lunt Solar Systems Herschel Prism and my Canon T2i.  All the images were taken at 1/4000 of a second, ISO 100 and were shot in raw format.  I was shooting at a very high shutter speed in order to try and minimize the effects of atmospheric turbulence in my images.  I later used photoshop to increase the exposure value and stretch the contrast of the images.  Overall, the seeing conditions ranged from good to spectacular during the first part of the eclipse, but as mid-eclipse approached the conditions deteriorated slightly.  Below are a few of the best images that I captured, and as always, click to enlarge.

Start of Eclipse

Sharpest of my images, quite happy with this one!

Near greatest eclipse

A nice view after maximum eclipse, atmosphere not as stable

EDIT: The large sunspot region on the face of the Sun during the eclipse, Active Region 12192, has produced (as of yesterday) 9 X-class flares and is obviously quite large.  "How large" you are wondering?...well the blog of the SDO mission has published an interesting post comparing AR 12192 to previous spots.  If you look at the graph they provide you will see that this is the largest spot region (by area) in the past two solar cycles!  They report that it is the 33rd largest on record, and within the top .01% of all spots.  Pretty impressive stuff!

We were rather lucky to have this spot during the eclipse, and even luckier that it was in the Sun's southern hemisphere and not eclipsed by the moon, making for some pretty pictures.  Looking forward to the August 2017 Total Eclipse!

Sunday, October 12, 2014

Visiting Griffith Observatory


Perched high above Hollywood, California is another landmark of American astronomy- Griffith Observatory.  While Mount Wilson has a unique place in the history of astronomical discovery, Griffith is best known for its significant outreach program.  It is an iconic structure, visible from 360 degrees below, and is recognizable even to those not (yet) interested in astronomy and space sciences. From Rebel Without a Cause to The Terminator and the Transformers, the building has captured the imagination of many since its completion in 1935.




I was visiting the observatory with my colleague Adam to tour the facilities and to meet with Griffith staff to discuss best practices and ways that we could be mutually supportive of each other.  We were treated to a comprehensive tour of the facilities and also took in a planetarium show in the Samuel Oschin theater, Centered in the Universe, which was without a doubt the best planetarium theater show either Adam or I had ever seen.

As mentioned, the observatory was completed in 1935 as the result of the vision of Griffith J. Griffith who had visited Mount Wilson and observed through the largest telescope in the word at the time, the 60-inch reflector.  He was so moved by the experience that following consultation with Mount Wilson founder George Ellery Hale, he established a fund with the goal of providing all of mankind the opportunity for inspiration that he had experienced at Mount Wilson. Unfortunately, Griffith passed away in 1919 and his dream was not realized until after his death.

Griffith Observatory
The observatory was opened with the same telescope still in use today, the 12-inch Zeiss Refractor.  This telescope is a work of optical and mechanical art and is housed in the east dome (at left in the above image) of the observatory.  I have provided a few images of this telescope below, on its original mounting.  Riding atop the 12-inch is a 9-inch refractor and Celestron 9.25-inch Schmidt Cassegrain.




In the west dome of the observatory (at left) is a Coelostat; a telescope dedicated to observing the Sun.  Coelostat is from the Latin and means "Sky Stopper."   Below, you can see Griffith's Coelostat which consists of three 13-inch mirror flats.  These are actually the 'second' mirrors in the optical path, as there is a larger flat out of view in the image which is pointed at the Sun and reflecting the image to the three flats.  Each of these three mirrors directs an image of the Sun to a different display inside the observatory exhibit hall: A white light image, a hydrogen alpha image, and a solar spectrum.  The other two images below are of the shaft of light being focused down through the dome floor to another flat and into the hydrogen alpha telescope assembly.







Finally, a fun image from inside the exhibit hall where there is a large Tesla Coil.  This is among the most popular exhibits at Griffith and certainly is unique.  Our host fired up the coil and I managed to take a picture of it in action.  At left  is an image of the whole exhibit, as well as a full resolution crop of the electrical current below.



After a week in LA, it is good to be home!

Thursday, October 9, 2014

A visit to Mount Wilson Observatory

100-inch Hooker Telescope
I am in Los Angeles this week visiting my sister and her family and also doing a bit of business related to my day job as Director the Mount Lemmon SkyCenter.  My colleague Adam and I are visiting some of our partners in astronomical outreach on the west coast, and yesterday we visited Mount Wilson Observatory where we received an informative and inspiring tour from one of their senior docents and 60-inch telescope operator Nik Arkimovich.  Walking around the site with Nik for 2.5 hours discussing the history, politics and economy of the early 1900's provided wonderful context for considering the astronomical facilities that were erected, as well as the groundbreaking discoveries that were made at Mount Wilson.

As an amateur astronomer the visit was as impressive as a visit to any significant landmark or museum of American history.  Progressing through the afternoon was akin to progressing through a history of American Astronomy.  We walked in the footsteps of Mount Wilson Observatory founder George Ellery Hale, as well as visionaries such as Edwin Hubble, Harlow Shapley, Fritz Zwicky, and some physics genius named Albert Einstein.  Much of the site remains as it was during the early to mid 1900's when some of the most significant discoveries in astronomy were made at the the observatory.  While improvements have been made related to safety, access and technological advances, the original Snow solar telescope, the 60 and 150 foot solar towers, the 60-inch and the 100-inch Hooker telescope as well as the large trees throughout the observatory grounds bear witness to the people and ideas that have walked the paths over the past century.  Briefly, these are some of the highlights of our visit to Mount Wilson:

150 and 60 foot Solar Towers
Snow telescope enclosure
Shortly after beginning our tour, the 60 and 150 foot solar towers (image at right) came into view.  These telescopes were actually the second and third solar telescopes on site, with the first being the famous Snow telescope.  Mount Wilson's founder, George Ellery Hale, installed the Snow solar telescope in 1904 following its relocation from Yerkes Observatory in Wisconsin.  It is the oldest telescope at Mount Wilson and it's optical path is actually horizontal (parallel to) and just above ground.  At left is an image of the Snow telescope enclosure running along the ground, with the 60 foot solar tower in the background.  The design of the Snow proved to be rather poor as the image of the Sun was dramatically impacted by thermal currents swirling all along the optical path.  We were told that Hale quickly surmised that a vertical optical path would be better and the story is that he climbed various trees on site with a telescope to evaluate the localized seeing conditions.  By 1908, Hale had arranged for construction of the 60 foot solar tower and it was using this instrument that he soon identified magnetic fields in sunspots, and thus for the first time proved that magnetic fields existed outside of Earth!  Given his success and the utility of the solar tower design Hale then constructed a 150 foot solar tower in 1912, and began a daily recording of sunspots and study of their position, polarity, and strength that continues today.  You can see the most recent daily sunspot drawing from Mount Wilson by visiting this webpage.  Below is an image of the 150 foot Solar Towers.

150 foot Solar Tower
As we progressed further into the observatory grounds we were soon within the dome for the 60-inch telescope.  The 60 inch telescope was built by Hale in 1908 and funded primarily by the Carnegie Institution.  The mirror blank itself had been cast in 1894 in France and was acquired by Hale as a gift from his father.  While currently used exclusively for public outreach, this telescope was utilized for many of the pioneering studies in spectroscopy that led to the stellar spectral classification system.  Impressively, this was the largest telescope in the world until 1917 when the 100-inch Hooker telescope was finished.  Below are two images of the telescope in its dome.




Immediately below the 60-inch observatory floor are a darkroom and the original lockers that were provided for observers.  These two pictures of the lockers are worth enlarging in order to read the names...





Next up was a quick pass by the CHARA array of Georgia State University that sits atop the observatory grounds.  At right is one of the six enclosures that make up the Center for High Angular Resolution Astronomy array at Mount Wilson.  Together, these 6 one-meter "telescopes are dispersed over the mountain to provide a two-dimensional layout that provides the resolving capability (but not the light collecting ability!) of a single telescope a fifth of a mile in diameter. Light from the individual telescopes is conveyed through vacuum tubes to a central Beam Synthesis Facility in which the six beams are combined together. When the paths of the individual beams are matched to an accuracy of less than one micron, after the light traverses distances of hundreds of meters, the Array then acts like a single coherent telescope for the purposes of achieving exceptionally high angular resolution." (Quoted from this source).  Among the many notable achievements of this array was the first direct image of an interacting binary star (Beta Lyrae).

100-inch Hooker
Hooker Dome
Continuing on we approached the building and dome housing the 100-inch Hooker Telescope (at left).  The Hooker telescope was completed in 1917 and served as the largest telescope in the world until 1948 when the 200-inch telescope was installed at Palomar Mountain to the south.  The telescope is beautiful to behold and along with the furnishings and the building itself hearken back to to a time of seminal discoveries in astronomy.  In 1919, representing the first ever use of an interferometer in astronomy, an optical interferometer was used on this telescope to measure the sizes of distant stars.  Most famously, on the night of October 5-6, 1923 (almost exactly 91 years ago!) Edwin Hubble imaged a Cepheid variable star in the great Andromeda Galaxy and for the first time proved with certainty that the Andromeda 'nebula' was outside of our own galaxy and in fact a galaxy completely separate from our own.  This discovery was a key part of Hubble's pioneering work on the expansion of the Universe and the establishment of a cosmic distance scale.

Below are two images of the original, and still functional control panel for the telescope.  At left you can see the two periscope like devices that using a series of prisms allowed the observer to see the distant setting circles mounted on the telescope to note it's position.  At right you can see a close up of the brass control buttons for the telescope



If you have read this far and are interested in seeing more pictures (such as of the backside of the 100-inch mirror, or the mounting and gear system of the 60-inch) email me!  For the rest of you, I did make a one-minute video of the 100-inch Hooker telescope as I stood on the rotating platform (at the base of the dome) above the observatory floor.  Click on the settings icon (looks like a gear) to set it to HD and watch it full screen:




Again, a big thank you to Mount Wilson for hosting us, and especially to Nik for taking the time to show us around.